

Daily Tutorial Sheet-14

Level-3

153. $O_3 + 2KI + H_2O \rightarrow 2KOH + I_2 + O_2$

 $2Na_2S_2O_3 + I_2 \rightarrow Na_2S_4O_6 + 2NaI$

Millimoles of O_3 = Millimoles of $I_2 = \frac{1}{2} \times Millimoles of Na₂S₂O₃$

$$= \frac{1}{2} \times 40 \times 1/10 = 2 \text{ millimoles} = 0.002 \text{ moles}$$

Total moles of O_3 and O_2 in the mixture: PV = n RT

$$1\times1=n\times0.0821\times273$$

$$n = 0.044$$

Moles of $O_2 = 0.044 - 0.002 = 0.042$

$$W_{O_2} = 0.042 \times 32 g = 1.344 g$$

$$W_{O_3} = 0.002 \times 48 \; g = 0.096 \; g$$

$$\therefore \qquad \text{% of } O_3 = \frac{0.096}{1.144} \times 100 = 6.7\%$$

No. of photons required for decomposition of ozone molecules = $0.002 \times 6.023 \times 10^{23} = 1.2 \times 10^{21}$

154. Equivalents of dichromate initially = $\frac{1.25 \times 6 \times 100}{1000} = 0.75$

Equivalents of Fe²⁺ in 25 ml =
$$\frac{0.875 \times 5 \times 20}{1000}$$
 = 0.0875

Equivalents of Fe²⁺ in 50 ml = $0.0875 \times 2 = 0.175$

Equivalents of excess dichromate = 0.175

 \therefore Equivalents of dichromate consumed by (CuS and Cu₂S) = 0.75 – 0.175 = 0.575

If $x\ g$ is the mass of CuS, the mass of Cu₂S is (10 – x) g

$$\frac{x}{95.5} \times 6 + \frac{(10-x)}{159} \times 8 = 0.575$$

$$x = 5.74 \text{ gm}$$

% CuS =
$$\frac{5.74}{10} \times 100 = 57.4\%$$

$$% Cu_2S = 42.6\%$$

155. Let, weight of BaCO₃, CaCO₃ and CaO are x, y and z respectively.

$$x + y + z = 1.249$$

$$BaCO_3 \longrightarrow BaCrO_4$$

Redox change

$$Cr^{6+} + 3e^- \longrightarrow Cr^{3+}$$

$$2I^- \longrightarrow I_2 + 2e^-$$

Meq. of $BaCO_3 = Meq.$ of $BaCrO_4 = Meq.$ of I_2

$$\therefore \frac{x}{197/3} \times 1000 = 20 \times 0.05 \times \frac{100}{10}$$

$$x = 0.657 \text{ gm}$$
 ... (1)

The equivalent weight of $BaCrO_4$ is M/3, therefore for $BaCO_3$, it should be M/3 also because mole ratio of $BaCO_3$ and $BaCrO_4$ is 1:1.

Applying POAC for C atom,

Moles of C in BaCO₃ + Moles of C in CaCO₃ = Moles of C in CO₂

$$\frac{x}{197} + \frac{y}{100} = \frac{168}{22400}$$

$$\Rightarrow 200x + 294y = 295.5 \qquad ... (2)$$

From equation (1) and (2)

$$y = 0.416 \text{ gm}$$

$$\therefore$$
 0.0657 + 0.416 + z = 1.249

$$z = 0.176$$

% of CaO =
$$\frac{0.176}{1.249}$$
 = 14.09%

156. The chemical reaction is, $H_2O + KI + O_3 \longrightarrow I_2 + O_2 + KOH$

Milliequivalents of iodine = Milliequivalents of KI = Milli equivalents of O3 reacted

Milliequivalents of $Na_2S_2O_3$ = 1.5×0.01 = 1.5×10^{-2}

Millimoles of iodine =
$$\frac{1.5 \times 10^{-2}}{2}$$
 = 7.5 × 10⁻³ [:: n-factor for iodine = 2]

Millimoles of ozone = 7.5×10^{-3}

Volume of ozone =
$$\frac{nRT}{P} = \frac{7.5 \times 10^{-6} \times 0.0821 \times 300}{1} = 184.725 \times 10^{-6}$$
 litre

Volume per cent of ozone = $\frac{184.725 \times 10^{-6}}{10} \times 100 = 1.847 \times 10^{-3}$

157. XO + $K_2Cr_2O_7 \longrightarrow Cr^{3+} + XO_4^-$

$$X_2O_3 + K_2Cr_2O_7 \longrightarrow Cr^{3+} + XO_4^-$$

Let, wt. of XO in the mixture be x g

Equivalent of $K_2Cr_2O_7$ consumed by the mixture = 0.015×6

Equivalents of XO =
$$\frac{x}{x+16} \times 5$$

Equivalents of
$$X_2O_3 = \frac{2.18 - x}{2x + 48} \times 8$$

$$\therefore \frac{x}{x+16} \times 5 + \frac{2.18 - x}{2x+48} \times 8 = 0.015 \times 6$$

Since 1 mole of XO gives 1 mole XO_4^- and 1 mole of X_2O_3 gives 2 moles of XO_4^- ,

$$\therefore \frac{x}{x+16} + \frac{2x(2.18-x)}{2x+48} = 0.0187$$

On solving, x = 99

158. Moles of $KIO_3 = \frac{0.1}{214} = 0.00047$

$$\therefore \qquad \text{Moles of } I_2 \text{ liberated from } KIO_3 = \frac{0.00047}{2} = 0.000235$$

Moles of KI reacting = $0.00047 \times 5 = 0.00235$ (: n-factor for KIO₃ and KI are 5 ad 1 respectively)

Moles of
$$I_2$$
 produced from $KI = \frac{0.00235}{2} = 0.001175$

Total moles of I_2 produced and reacted = 0.000235 + 0.001175 = 0.00141 equivalents of I_2 reacted

=
$$0.00141 \times 2 = 0.00282$$
 = equivalents of thiosulphate Solution:

Molarity =
$$\frac{0.00282 \times 1000}{V}$$
 = 0.063 M (For thiosulphate n-factor = 1)
(V = 45 mL)